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Motivation and Key Takeaways

B Motivation

As PO becomes increasingly prevalent in real-world applications, privacy concerns are emerg-
ing as a critical challenge. (e.g., patient interactions in personalized medical care, user prompts
in large language models (LLMs))

B Key question
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Differentially Private Policy Gradient

What is the sample complexity cost induced by differential privacy in policy optimization?

B Main contributions

1. PO-specific DP definition: We propose a DP notion tailored for PO, accounting for
unigue learning dynamics and privacy units.

2. Unified meta-algorithm: Enables private PG, NPG, and REBEL; reduces PO to private
regression In some cases.

3. Sample Complexity: Our theoretical results demonstrate that privacy costs can often
manifest as lower-order terms in the sample complexity.

Key Takeaways

1. Privacy can be achieved with minimal statistical cost: leading terms match non-private
bounds(such that Yuan et al.[4]).

2. Specific problem structures matters: often lead to better results, both statistically and
computationally.

Differential Privacy in Policy Optimization

B Definition1: DPin PO

= Consider any policy optimization algorithm M interacting with a set D of N “users” and
M(D) being the final output policy. We say M is (e, )-DP if for adjacent datasets D, D’
differing by one “user’, and V.S C Range(M):

PIM(D) € S] < e -PIM(D') € S| + 6.

= Remark: The standard DP definition assumes a fixed dataset of i.i.d. samples and protects
the privacy of individual data records, making it suitable for supervised learning. In
contrast, policy optimization (PO) involves dynamically collected data through on-policy
interactions, where changing one sample can influence future data due to policy shifts, in
that case, our DP in PO redefines the privacy unit as a "user” (e.g., a patient or prompt).

A Meta Algorithm for Private PO

Algorithm 1: A Meta Algorithm
// Input: reward function r, learning rate 7, batch size m, policy
class my, base policy p, and a PrivUpdate oracle

1. Initialize: 6; =0
2. Fort=1toT:
= Collect a fresh dataset D; = {(x;, yi, y)) ¥, where:

Zi ~ P, Yi ~ /L(|CC1>, y; ~ 779t(°|xi>

= Foralli € [m], let Ay(zy, yi) := r(zi, yi) — r(a, yi) be the estimate of A™(x;, y;)
= Call a PrivUpdate oracle on Dy := {(z, vi, ¥, A(xi, y;)) }i, to find next policy 6,11

3. End For

Proposition: Suppose PrivUpdate satisfies (g,d)-DP under Definition of DP in PO, then
Algorithm 1 satisfies (g, d)-DP in terms of Definition of standard DP.
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Algorithm 2: PrivUpdate Instantiation for DP-PG

1. Compute the empirical policy gradient:

N 1 ~
Vind (0) :=—  Vologms,(yi | i) - Aulxi, y)
1=1

2. Add Gaussian noise: g; := V,,,J(0) + N(0, 1)

3. Output policy: 0.1 =0, +1 - ¢
Assumption 1: (Fisher-non-degenerate, adapted from Assumption 2.1 of Ding et.al [3])

For all @ € RY, there exists v > 0 s.t. the Fisher information matrix F,(0) induced by policy
7 and inifial state distribution p satisfies

Fo(0) = By yomy(-[2) [V@ log my(y|x) Vg log 7Tg(g|:E>T] > 71,

Assumption 2: (Compatible, adapted from Assumption 4.6 in Ding et.al [3]) For all 8 €
R? there exists apas > 0 such that the transferred compatible function approximation error
satisfies

B gmmse(1s) [(A™(@,Y) =
where g« is an optimal policy and u* = F,(0)TVJ(9).

TV@ 1Og 7T9(y|$)> } (pias,

Theorem 1: For any a > 0, DP-PG enjoys the following average regret guarantee

__ZE

when the sample size satisfies N > Oy (0/374 + Yd )

a3~y3e

(@) + O (V/abias)

Differentially Private NPG

Algorithm 3: PrivUpdate Instantiation for DP-NPG

1. Call the PrivLs oracle on Dy := {(x;, y;, Zt(fliz‘, y;))} to find an approximate minimizer
Wy of

argmin Fi(w) :=

Eopymon(la) {(Am)t@j Y)
wew

— w"V logmy (yl2)’]

2. Output policy 0,1 = 0; + nwy

Assumption 3: For each t € [T}, the PrivLS oracle satisfies (g, d)-DP while ensuring that
with probability at least 1 — ¢,

Ea:wp,yw,u(-\x) [(Amt (SIZ, y) — Wy v 1Og 7T9t<y|x>) } < err?<m7 &, 57 C)a

for some error function err?(m, ¢, §, () over batch size m, privacy parameters ¢, §, and
probability (.

Theorem 2: DP-NPG satisfies (g, 0)-DP as in Definition 1. Moreover, if my := my, is a uniform

21log ||

distribution at each state and n = 4/ 37

policy 7*, we have

, with probability at least 1—¢, for any comparator

err¢(m, €, 9, (),

T
12 T < \/5W21og|y| vC WZ
t=1

ey

L T (y|z) o
where C),_r« 1= max, ) ) and Ty = T,
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Applications of DP-NPG

B Exponential Mechanism

Algorithm 5: PrivLS Instantiation for DP-NPG via Exponential Mechanism
// Input: privacy budget e, current policy 0;,, reward range Rnyax

1. Sample w; € W with the following distribution:
£
8 R?

P(w) o exp ( L(w)) Yw e W,

— Ay, i)

where L(w) == ) w 'V log mg, (il ;)

Assumption 4: Assume the advantage function satisfies approximate realizability:

inf Ex~p,y~,u(~\ﬂ§) [(Am(x y) — wTV10g7T (?J‘x» }

Q 1
weW approx: ( )

| hen, Sampling w Via the exponent:ial mechanism Vi@|d5’
- R2 log(IW|/( R2 log(|W|/C

m EmM

E (1) ~pxputlz) (@' V log m,(y|z) — o

Corollary 1: Consider DP-NPG with PriuLS as in Algorithm above. Then, DP-NPG satisfies
(¢,0)-DP. Suppose for each t € [T, there exists an aapprox SUCh that (1) holds. Then, under
the same assumptions in Theorem 2, we have

] — W] 1+ 1/¢) log(|W
J(TF*> . TZ; J(’Eﬁ) 5 \/5 j?g D}| 4 \/C,u—nr*aapprox + \/C,u—wr* . ( + /5) Og<| |/C>
=

m
This implies that, for a given suboptimality gap of O(«a + \/Cuéﬂ*aapprox), the sample com-
plexity bound is N =T -m = O ((& + =) - log |W] - BW?).

B Log-linear policy class with realizability

Corollary 2: Consider DP-NPG with the above log-linear class (with smoothness parameter

B = B?). Suppose PrivLS is instantiated with the ISSP algorithm in [1]. Then, by [1,
dy/0g(1/0) | d(log(1/9))

Qe g2

Theorem 5], we have that erry(m, e,9,() < a, when m > O (%Jr

Thus, by Theorem 2, for a suboptimality gap of O(a), the sample complexity bound is
N=1T-m= O (< a§s+a252) B2W2)

Corollary 3: Consider DP-NPG with the above log-linear class (with smoothness parameter
B = B?). Suppose PrsuLS is instantiated with Algorithm 5 in [2]. Then, by [2, Theorem

6.2], we have that erry(m,e,8,() < a whenm > O (log 1/Q) o Vlog( 1/C log(l/é ) Thus, by

theorem 2, for a suboptimality gap of O(«), the sample compIeX|ty bound isN=T-m=
Os (5 + z52) - B*W?2).
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