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Motivation and Key Takeaways

� Motivation

As PO becomes increasingly prevalent in real-world applications, privacy concerns are emerg-

ing as a critical challenge. (e.g., patient interactions in personalizedmedical care, user prompts

in large language models (LLMs))

� Key question

What is the sample complexity cost induced by differential privacy in policy optimization?

� Main contributions

1. PO-specific DP definition: We propose a DP notion tailored for PO, accounting for

unique learning dynamics and privacy units.

2. Unified meta-algorithm: Enables private PG, NPG, and REBEL; reduces PO to private

regression in some cases.

3. Sample Complexity: Our theoretical results demonstrate that privacy costs can often

manifest as lower-order terms in the sample complexity.

Key Takeaways

1. Privacy can be achieved with minimal statistical cost: leading terms match non-private

bounds(such that Yuan et al.[4]).

2. Specific problem structures matters: often lead to better results, both statistically and

computationally.

Differential Privacy in Policy Optimization

� Definition 1 : DP in PO

Consider any policy optimization algorithm M interacting with a set D of N “users” and

M(D) being the final output policy. We say M is (ε, δ)-DP if for adjacent datasets D, D′

differing by one “user”, and ∀S ⊆ Range(M):

P[M(D) ∈ S] 6 eε · P[M(D′) ∈ S] + δ.

Remark: The standard DP definition assumes a fixed dataset of i.i.d. samples and protects

the privacy of individual data records, making it suitable for supervised learning. In

contrast, policy optimization (PO) involves dynamically collected data through on-policy

interactions, where changing one sample can influence future data due to policy shifts, in

that case, our DP in PO redefines the privacy unit as a ”user” (e.g., a patient or prompt).

AMeta Algorithm for Private PO

Algorithm 1: A Meta Algorithm

// Input: reward function r, learning rate η, batch size m, policy
class πθ, base policy µ, and a PrivUpdate oracle

1. Initialize: θ1 = 0
2. For t = 1 to T :

Collect a fresh dataset D̄t = {(xi, yi, y′
i)}m

i=1 where:

xi ∼ ρ, yi ∼ µ(·|xi), y′
i ∼ πθt

(·|xi)

For all i ∈ [m], let Ât(xi, yi) := r(xi, yi) − r(xi, y′
i) be the estimate of Aπθt(xi, yi)

Call a PrivUpdate oracle on Dt := {(xi, yi, y′
i, Ât(xi, yi))}m

i=1 to find next policy θt+1

3. End For

Proposition: Suppose PrivUpdate satisfies (ε, δ)-DP under Definition of DP in PO, then

Algorithm 1 satisfies (ε, δ)-DP in terms of Definition of standard DP.

Differentially Private Policy Gradient

Algorithm 2: PrivUpdate Instantiation for DP-PG

1. Compute the empirical policy gradient:

∇̂mJ(θ) := 1
m

m∑
i=1

∇θ log πθt
(yi | xi) · Ât(xi, yi)

2. Add Gaussian noise: g̃t := ∇̂mJ(θ) + N (0, σ2I)
3. Output policy: θt+1 = θt + η · g̃t

Assumption 1: (Fisher-non-degenerate, adapted from Assumption 2.1 of Ding et.al [3])

For all θ ∈ Rd, there exists γ > 0 s.t. the Fisher information matrix Fρ(θ) induced by policy

πθ and initial state distribution ρ satisfies

Fρ(θ) = Ex∼ρ,y∼πθ(·|x)
[
∇θ log πθ(y|x)∇θ log πθ(y|x)>] > γId.

Assumption 2: (Compatible, adapted from Assumption 4.6 in Ding et.al [3]) For all θ ∈
Rd, there exists αbias > 0 such that the transferred compatible function approximation error

satisfies

Ex∼ρ,y∼πθ∗(·|s)
[
(Aπθ(x, y)−u∗>∇θ log πθ(y|x))2] 6 αbias,

where πθ∗ is an optimal policy and u∗ = Fρ(θ)†∇J(θ).

Theorem 1: For any α > 0, DP-PG enjoys the following average regret guarantee

J∗ − 1
T

T∑
t=1

E [J(θt)] 6 O(α) + O (
√

αbias) ,

when the sample size satisfies N > Oδ

(
1

α4γ4 +
√

d
α3γ3ε

)
.

Differentially Private NPG

Algorithm 3: PrivUpdate Instantiation for DP-NPG

1. Call the PrivLS oracle on Dt := {(xi, yi, Ât(xi, yi))} to find an approximate minimizer

wt of

argmin
w∈W

Ft(w) := Ex∼ρ,y∼µ(·|x)

[(
Aπθt(x, y) − w>∇ log πθt

(y|x)
)2
]

2. Output policy θt+1 = θt + ηwt

Assumption 3: For each t ∈ [T ], the PrivLS oracle satisfies (ε, δ)-DP while ensuring that

with probability at least 1 − ζ ,

Ex∼ρ,y∼µ(·|x)

[(
Aπθt(x, y) − w>

t ∇ log πθt
(y|x)

)2
]
6 err2

t (m, ε, δ, ζ),

for some error function err2
t (m, ε, δ, ζ) over batch size m, privacy parameters ε, δ, and

probability ζ .

Theorem 2: DP-NPG satisfies (ε, δ)-DP as in Definition 1. Moreover, if π1 := πθ1 is a uniform

distribution at each state and η =
√

2 log |Y|
TβW 2 , with probability at least 1−ζ , for any comparator

policy π∗, we have

J(π∗) − 1
T

T∑
t=1

J(πt) 6
√

βW 2 log |Y|
2T

+
√

Cµ→π∗

T

T∑
t=1

errt(m, ε, δ, ζ),

where Cµ→π∗ := maxx,y
π∗(y|x)
µ(y|x) and πt := πθt

.

Applications of DP-NPG

� Exponential Mechanism

Algorithm 5: PrivLS Instantiation for DP-NPG via Exponential Mechanism

// Input: privacy budget ε, current policy θt, reward range Rmax

1. Sample wt ∈ W with the following distribution:

P (w) ∝ exp
(

− ε

8R2
max

· L(w)
)

∀w ∈ W ,

where L(w) :=
∑

i∈[m][w>∇ log πθt
(yi|xi) − Ât(xi, yi)]2

Assumption 4: Assume the advantage function satisfies approximate realizability:

inf
w∈W

Ex∼ρ,y∼µ(·|x)
[
(Aπθt(x, y) − w>∇ log πθt

(y|x))2] 6 αapprox. (1)

Then, sampling ŵ via the exponential mechanism yields:

E(x,y)∼ρ×µ(·|x)
[
(ŵ>∇ log πθt

(y|x) − Aπθt(x, y))2] . R2 log(|W|/ζ)
m

+ R2 log(|W|/ζ)
εm

+ αapprox.

Corollary 1: Consider DP-NPG with PrivLS as in Algorithm above. Then, DP-NPG satisfies

(ε, 0)-DP. Suppose for each t ∈ [T ], there exists an αapprox such that (1) holds. Then, under

the same assumptions in Theorem 2, we have

J(π∗) − 1
T

T∑
t=1

J(πt) .
√

βW 2 log |Y|
T

+
√

Cµ→π∗αapprox +
√

Cµ→π∗ · (1 + 1/ε) log(|W|/ζ)
m

.

This implies that, for a given suboptimality gap of O(α +
√

Cµ→π∗αapprox), the sample com-

plexity bound is N = T · m = Õ
(
( 1

α4 + 1
α4ε) · log |W| · βW 2).

� Log-linear policy class with realizability

Corollary 2: Consider DP-NPG with the above log-linear class (with smoothness parameter

β = B2). Suppose PrivLS is instantiated with the ISSP algorithm in [1]. Then, by [1,

Theorem 5], we have that errt(m, ε, δ, ζ) 6 α, when m > Õ
(

d
α2 + d

√
log(1/δ)
αε + d(log(1/δ))2

ε2

)
.

Thus, by Theorem 2, for a suboptimality gap of O(α), the sample complexity bound is

N = T · m = Õδ

(
( d

α4 + d
α3ε + d

α2ε2) · B2W 2).
Corollary 3: Consider DP-NPG with the above log-linear class (with smoothness parameter

β = B2). Suppose PrivLS is instantiated with Algorithm 5 in [2]. Then, by [2, Theorem

6.2], we have that errt(m, ε, δ, ζ) 6 α when m > Õ
(

log(1/ζ)
α4 +

√
log(1/ζ) log(1/δ)

α3ε

)
. Thus, by

Theorem 2, for a suboptimality gap of O(α), the sample complexity bound is N = T · m =
Õδ

(
( 1

α6 + 1
α5ε) · B2W 2).
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