

On the Sample Complexity of Differentially Private Policy Optimization

Yi He Xingyu Zhou

Wayne State University

Motivation and Key Takeaways

■ Motivation

As PO becomes increasingly prevalent in real-world applications, privacy concerns are emerging as a critical challenge. (e.g., patient interactions in personalized medical care, user prompts in large language models (LLMs))

■ Key question

What is the sample complexity cost induced by differential privacy in policy optimization?

■ Main contributions

- 1. PO-specific DP definition: We propose a DP notion tailored for PO, accounting for unique learning dynamics and privacy units.
- 2. **Unified meta-algorithm**: Enables private PG, NPG, and REBEL; reduces PO to private regression in some cases.
- 3. **Sample Complexity**: Our theoretical results demonstrate that privacy costs can often manifest as lower-order terms in the sample complexity.

Key Takeaways

- 1. **Privacy can be achieved with minimal statistical cost**: leading terms match non-private bounds(such that Yuan et al.[4]).
- 2. Specific problem structures matters: often lead to better results, both statistically and computationally.

Differential Privacy in Policy Optimization

■ Definition 1 : DP in PO

• Consider any policy optimization algorithm \mathcal{M} interacting with a set D of N "users" and $\mathcal{M}(D)$ being the final output policy. We say \mathcal{M} is (ε, δ) -DP if for adjacent datasets D, D' differing by one "user", and $\forall S \subseteq \mathsf{Range}(\mathcal{M})$:

$$\mathbb{P}[\mathcal{M}(D) \in S] \leqslant e^{\varepsilon} \cdot \mathbb{P}[\mathcal{M}(D') \in S] + \delta.$$

• Remark: The standard DP definition assumes a fixed dataset of i.i.d. samples and protects the privacy of individual data records, making it suitable for supervised learning. In contrast, policy optimization (PO) involves dynamically collected data through on-policy interactions, where changing one sample can influence future data due to policy shifts, in that case, our DP in PO redefines the privacy unit as a "user" (e.g., a patient or prompt).

A Meta Algorithm for Private PO

Algorithm 1: A Meta Algorithm

// Input: reward function r, learning rate η , batch size m, policy class π_{θ} , base policy μ , and a PrivUpdate oracle

- 1. Initialize: $\theta_1 = 0$
- 2. For t = 1 to T:
 - Collect a fresh dataset $\bar{D}_t = \{(x_i, y_i, y_i')\}_{i=1}^m$ where:

$$x_i \sim \rho, \quad y_i \sim \mu(\cdot|x_i), \quad y_i' \sim \pi_{\theta_t}(\cdot|x_i)$$

- For all $i \in [m]$, let $\widehat{A}_t(x_i, y_i) := r(x_i, y_i) r(x_i, y_i')$ be the estimate of $A^{\pi_{\theta_t}}(x_i, y_i)$
- Call a **PrivUpdate** oracle on $D_t := \{(x_i, y_i, y_i', \widehat{A}_t(x_i, y_i))\}_{i=1}^m$ to find next policy θ_{t+1}
- 3. End For

Proposition: Suppose PrivUpdate satisfies (ε, δ) -DP under Definition of DP in PO, then Algorithm 1 satisfies (ε, δ) -DP in terms of Definition of standard DP.

Differentially Private Policy Gradient

Algorithm 2: PrivUpdate Instantiation for DP-PG

1. Compute the empirical policy gradient:

$$\widehat{\nabla}_m J(\theta) := \frac{1}{m} \sum_{i=1}^m \nabla_\theta \log \pi_{\theta_t}(y_i \mid x_i) \cdot \widehat{A}_t(x_i, y_i)$$

- 2. Add Gaussian noise: $\widetilde{g}_t := \widehat{\nabla}_m J(\theta) + \mathcal{N}(0, \sigma^2 I)$
- 3. Output policy: $\theta_{t+1} = \theta_t + \eta \cdot \widetilde{g}_t$

Assumption 1: (Fisher-non-degenerate, adapted from Assumption 2.1 of Ding et.al [3]) For all $\theta \in \mathbb{R}^d$, there exists $\gamma > 0$ s.t. the Fisher information matrix $F_{\rho}(\theta)$ induced by policy π_{θ} and initial state distribution ρ satisfies

$$F_{\rho}(\theta) = \mathbb{E}_{x \sim \rho, y \sim \pi_{\theta}(\cdot|x)} \left[\nabla_{\theta} \log \pi_{\theta}(y|x) \nabla_{\theta} \log \pi_{\theta}(y|x)^{\top} \right] \geqslant \gamma \mathbf{I}_{d}.$$

Assumption 2: (Compatible, adapted from Assumption 4.6 in Ding et.al [3]) For all $\theta \in \mathbb{R}^d$, there exists $\alpha_{\text{bias}} > 0$ such that the *transferred compatible function approximation error* satisfies

$$\mathbb{E}_{x \sim \rho, y \sim \pi_{\theta^*}(\cdot|s)} \left[(A^{\pi_{\theta}}(x, y) - u^{*\top} \nabla_{\theta} \log \pi_{\theta}(y|x))^2 \right] \leqslant \alpha_{\mathsf{bias}},$$

where π_{θ^*} is an optimal policy and $u^* = F_{\rho}(\theta)^{\dagger} \nabla J(\theta)$.

Theorem 1: For any $\alpha > 0$, DP-PG enjoys the following average regret guarantee

$$J^* - \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}\left[J(\theta_t)\right] \leqslant O(\alpha) + O\left(\sqrt{\alpha_{\mathsf{bias}}}\right),$$

when the sample size satisfies $N \geqslant O_{\delta} \left(\frac{1}{\alpha^4 \gamma^4} + \frac{\sqrt{d}}{\alpha^3 \gamma^3 \varepsilon} \right)$

Differentially Private NPG

Algorithm 3: PrivUpdate Instantiation for DP-NPG

1. Call the PrivLS oracle on $D_t := \{(x_i, y_i, \widehat{A}_t(x_i, y_i))\}$ to find an approximate minimizer w_t of

$$\underset{w \in \mathcal{W}}{\operatorname{argmin}} F_t(w) := \mathbb{E}_{x \sim \rho, y \sim \mu(\cdot | x)} \left[\left(A^{\pi_{\theta_t}}(x, y) - w^\top \nabla \log \pi_{\theta_t}(y | x) \right)^2 \right]$$

2. Output policy $\theta_{t+1} = \theta_t + \eta w_t$

Assumption 3: For each $t \in [T]$, the PrivLS oracle satisfies (ε, δ) -DP while ensuring that with probability at least $1 - \zeta$,

$$\mathbb{E}_{x \sim \rho, y \sim \mu(\cdot|x)} \left[\left(A^{\pi_{\theta_t}}(x, y) - w_t^{\top} \nabla \log \pi_{\theta_t}(y|x) \right)^2 \right] \leqslant \operatorname{err}_t^2(m, \varepsilon, \delta, \zeta),$$

for some error function $\operatorname{err}_t^2(m, \varepsilon, \delta, \zeta)$ over batch size m, privacy parameters ε , δ , and probability ζ .

Theorem 2: DP-NPG satisfies (ε, δ) -DP as in Definition 1. Moreover, if $\pi_1 := \pi_{\theta_1}$ is a uniform distribution at each state and $\eta = \sqrt{\frac{2 \log |\mathcal{Y}|}{T \beta W^2}}$, with probability at least $1 - \zeta$, for any comparator policy π^* , we have

$$J(\pi^*) - \frac{1}{T} \sum_{t=1}^{T} J(\pi_t) \leqslant \sqrt{\frac{\beta W^2 \log |\mathcal{Y}|}{2T}} + \frac{\sqrt{C_{\mu \to \pi^*}}}{T} \sum_{t=1}^{T} \operatorname{err}_t(m, \varepsilon, \delta, \zeta),$$

where $C_{\mu \to \pi^*} := \max_{x,y} \frac{\pi^*(y|x)}{\mu(y|x)}$ and $\pi_t := \pi_{\theta_t}$.

Applications of DP-NPG

■ Exponential Mechanism

Algorithm 5: PrivLS Instantiation for DP-NPG via Exponential Mechanism

// Input: privacy budget arepsilon, current policy $heta_t$, reward range R_{max}

1. Sample $w_t \in \mathcal{W}$ with the following distribution:

$$P(w) \propto \exp\left(-\frac{\varepsilon}{8R_{\max}^2} \cdot L(w)\right) \ \forall w \in \mathcal{W},$$

where
$$L(w) := \sum_{i \in [m]} [w^{ op} \nabla \log \pi_{\theta_t}(y_i|x_i) - \widehat{A}_t(x_i,y_i)]^2$$

Assumption 4: Assume the advantage function satisfies approximate realizability:

$$\inf_{w \in \mathcal{W}} \mathbb{E}_{x \sim \rho, y \sim \mu(\cdot|x)} \left[(A^{\pi_{\theta_t}}(x, y) - w^{\top} \nabla \log \pi_{\theta_t}(y|x))^2 \right] \leqslant \alpha_{\mathsf{approx}}. \tag{9}$$

Then, sampling \widehat{w} via the exponential mechanism yields:

$$\mathbb{E}_{(x,y)\sim\rho\times\mu(\cdot|x)}\left[(\widehat{w}^{\top}\nabla\log\pi_{\theta_t}(y|x)-A^{\pi_{\theta_t}}(x,y))^2\right]\lesssim \frac{R^2\log(|\mathcal{W}|/\zeta)}{m}+\frac{R^2\log(|\mathcal{W}|/\zeta)}{\varepsilon m}+\alpha_{\mathsf{approx}}.$$

Corollary 1: Consider DP-NPG with PrivLS as in Algorithm above. Then, DP-NPG satisfies $(\varepsilon,0)$ -DP. Suppose for each $t\in [T]$, there exists an α_{approx} such that (1) holds. Then, under the same assumptions in Theorem 2, we have

$$J(\pi^*) - \frac{1}{T} \sum_{t=1}^T J(\pi_t) \lesssim \sqrt{\frac{\beta W^2 \log |\mathcal{Y}|}{T}} + \sqrt{C_{\mu \to \pi^*} \alpha_{\mathsf{approx}}} + \sqrt{C_{\mu \to \pi^*} \cdot \frac{(1+1/\varepsilon) \log(|\mathcal{W}|/\zeta)}{m}}.$$

This implies that, for a given suboptimality gap of $O(\alpha + \sqrt{C_{\mu \to \pi^*} \alpha_{\text{approx}}})$, the sample complexity bound is $N = T \cdot m = \widetilde{O}\left(\left(\frac{1}{\alpha^4} + \frac{1}{\alpha^4 \varepsilon}\right) \cdot \log |\mathcal{W}| \cdot \beta W^2\right)$.

■ Log-linear policy class with realizability

Corollary 2: Consider DP-NPG with the above log-linear class (with smoothness parameter $\beta=B^2$). Suppose PrivLS is instantiated with the ISSP algorithm in [1]. Then, by [1, Theorem 5], we have that $err_t(m,\varepsilon,\delta,\zeta)\leqslant \alpha$, when $m\geqslant \widetilde{O}\left(\frac{d}{\alpha^2}+\frac{d\sqrt{\log(1/\delta)}}{\alpha\varepsilon}+\frac{d(\log(1/\delta))^2}{\varepsilon^2}\right)$. Thus, by Theorem 2, for a suboptimality gap of $O(\alpha)$, the sample complexity bound is $N=T\cdot m=\widetilde{O}_\delta\left(\left(\frac{d}{\alpha^4}+\frac{d}{\alpha^3\varepsilon}+\frac{d}{\alpha^2\varepsilon^2}\right)\cdot B^2W^2\right)$.

Corollary 3: Consider DP-NPG with the above log-linear class (with smoothness parameter $\beta=B^2$). Suppose PrivLS is instantiated with Algorithm 5 in [2]. Then, by [2, Theorem 6.2], we have that $\operatorname{err}_t(m,\varepsilon,\delta,\zeta)\leqslant \alpha$ when $m\geqslant \widetilde{O}\left(\frac{\log(1/\zeta)}{\alpha^4}+\frac{\sqrt{\log(1/\zeta)\log(1/\delta)}}{\alpha^3\varepsilon}\right)$. Thus, by Theorem 2, for a suboptimality gap of $O(\alpha)$, the sample complexity bound is $N=T\cdot m=\widetilde{O}_\delta\left(\left(\frac{1}{\alpha^6}+\frac{1}{\alpha^5\varepsilon}\right)\cdot B^2W^2\right)$.

References

[1] Gavin Brown, Jonathan Hayase, Samuel Hopkins, Weihao Kong, Xiyang Liu, Sewoong Oh, Juan C. Perdomo, and Adam Smith.

Insufficient statistics perturbation: Stable estimators for private least squares, 2024.

[2] Fan Chen, Jiachun Li, Alexander Rakhlin, and David Simchi-Levi.

Near-optimal private learning in linear contextual bandits, 2025.

Near-optimal private learning in linear contextual bandits, 2025.

3] Yuhao Ding, Junzi Zhang, and Javad Lavaei.

[3] Yuhao Ding, Junzi Zhang, and Javad Lavaei.
On the global optimum convergence of momentum-based policy gradient.
In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera, editors, *Proceedings of The 25th International Conference on Artificial Intelligence and Statistics*, volume 151 of *Proceedings of Machine Learning Research*, pages 1910–1934. PMLR, 28–30 Mar 2022.

[4] Rui Yuan, Robert M Gower, and Alessandro Lazaric.
A general sample complexity analysis of vanilla policy gradient.
In International Conference on Artificial Intelligence and Statistics, pages 3332–3380. PMLR, 2022.

https://simolark.com