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Policy Optimization - A Cornerstone of Modern RL

xt yt
rt

Base the rewards to 
update the  θt → θt+1

Target:  

Maximize the following objective 
         
where  is some distribution of the initial state.

J(πθ) = J(θ) := 𝔼x∼ρ,y∼πθ(⋅|x) [r(x, y)],
ρ
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Policy Optimization - A Cornerstone of Modern RL

Target:  

Maximize the  following objective 
         J(πθ) = J(θ) := 𝔼x∼ρ,y∼πθ(⋅|s) [r(x, y)] .

• One of the most widely used RL 
methods

• Directly optimizes the policy 
(unlike value-based methods)

• Core algorithms: PG, NPG, 
TRPO, PPO, GRPO

• Rich theoretical foundation 
established over decades
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xt yt
rt

Base the rewards to 
update the  θt → θt+1
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Real-World Impact Across Domains
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Privacy Risks in Learning from Sensitive Data
Both RL and LLMs learn from personal information — and risk leaking it.

🩺 Healthcare RL
• State: Patient medical history
• Action: Treatment decision
• Reward: Health outcome
•⚠ Risk: Leakage of private medical data

🧠 LLM Training
• Input: User prompts containing private info
• Process: Model training or fine-tuning
•⚠ Risk: Memorization and regurgitation of 

sensitive content

Both involve optimizing over sensitive data without formal privacy guarantees.
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Differential Privacy - The Golden Standard

Real-World Successes
• ✅ Supervised Learning — DP-SGD for private model training
• ✅ Federated Learning — privacy at the edge
• ✅ Data Analytics — deployed by Google, Apple, Microsoft
• ❓ Reinforcement Learning — an emerging frontier

Differential Privacy (DP) has become the cornerstone of modern data protection. 
Proposed by Dwork et al.[1], it formalizes privacy guarantees by ensuring that the 
outcome of an algorithm is nearly unaffected by the presence or absence of any 
individual user.

7



The Research Gap
Lack of Theoretical Understanding for Privacy in Policy Optimization

Current State: 

✅ Extensive PO theory for convergence and sample efficiency
✅ Broad deployment of PO in safety-critical domains (e.g., healthcare, LLM alignment)
❌ No theoretical results on sample complexity* under differential privacy 
❌ Standard DP notion fails under on-policy data generation 
❌ No unified framework connecting privacy, sample complexity, and PO theory

"Without a solid theory, privacy-preserving PO remains empirical — limiting safe and reliable deployment."
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* The sample complexity typically refers to the total number of sampled trajectories for finding an -optimal policy (i.e., ).α J(π*) − J( ̂π) ≤ α



Three Fundamental Questions for Private Policy Optimization

•📊 Theory: 
What's the sample complexity cost induced by differential privacy in PO?

•🧩 Definition: 
What is the right notion of differential privacy for policy optimization?

•⚙ Framework: 
How to design a unified* framework for private policy optimization?

9
* unified means using a unified algorithm to apply different algorithms.



Q1:  
 
What is the right notion of differential privacy 
for policy optimization?
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Differentially Privacy
Mathematical Definition

A randomized algorithm  is said to satisfy -Differential Privacy if, 
for any two datasets  and  that differ by only one record, and for any 
possible output  of the algorithm:

ℳ (ϵ, δ)
D D′￼

S

Pr[ℳ(D) ∈ S] ≤ eϵ ⋅ Pr[ℳ(D′￼) ∈ S] + δ

Definition 1 (Dwork et al.[1])
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An example of healthcare(without DP)

Ethan is an adversary who knows 
the system’s outputs and almost 
everything except John, and 
also holds aggregate statistics.

Medicine A Medicine B

John in the Training Data

Medicine A Medicine B

John not in the Training Data
12
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An example of healthcare(with DP)

Ethan is an adversary who knows 
the system’s outputs and almost 
everything except John, and 
also holds aggregate statistics.

Medicine A Medicine B

John in the Training Data

Medicine A Medicine B

John not in the Training Data
13
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Differentially Privacy
Mathematical Definition

A randomized algorithm  is said to satisfy -Differential Privacy if, 
for any two datasets  and  that differ by only one record, and for any 
possible output  of the algorithm:

ℳ (ϵ, δ)
D D′￼

S

Pr[ℳ(D) ∈ S] ≤ eϵ ⋅ Pr[ℳ(D′￼) ∈ S] + δ

What constitutes “one record”?

Definition 1 (Dwork et al.[1])
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Granularities of Differentially Privacy

The classical setting: two datasets are 
neighbors if they differ in exactly one 
interaction record. 
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Item‑Level DP

In Supervised Learning problem,  the standard DP notion can be directly used.

Only one record different.
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Item‑Level DP

Why not work in Policy Optimization? 

• No such a fixed dataset in PO  
the actions are often sampled in the on-policy fashion, 
i.e., using the most recent policy;

Feature(x) Label(y)

5

0

4

Most common dataset
17
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Item‑Level DP

Why not work in Policy Optimization? 

• No such a fi
the actions are often sampled in the on-policy fashion, 
i.e., using the most recent policy;

• The neighboring relation of differing in 
one sample  actually does not hold  
changing one sample will lead to difference in all future 
samples due to different policies onward.

(xi, yi)

(x1, y1), (x2, y2), (x3, y3), (x4, y4) . . .

(x1, y1), (x′￼2, y′￼2), (x3, y3), (x4, y4) . . .

Can this be true?
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Item‑Level DP

Why not work in Policy Optimization? 

• No such a fi
the actions are often sampled in the on-policy fashion, 
i.e., using the most recent policy;

• The neighboring relation of differing in 
one sample  actually does not hold  
changing one sample will lead to difference in all future 
samples due to different policies onward.

(xi, yi)

(x1, y1), (x2, y2), (x3, y3), (x4, y4) . . .

(x1, y1), (x′￼2, y′￼2), (x3, y′￼3), (x4, y′￼4) . . .

Absolutely Not!!!
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Granularities of Differentially Privacy

Consider any policy optimization algorithm  interacting with a set  of  
``users'' and  being the final output policy. We say  is -DP if for 
any adjacent datasets  differing by one ``user'', and :

ℳ D N
ℳ(D) ℳ (ϵ, δ)

D, D′￼ ∀S ⊆ Range(ℳ)

ℙ[ℳ(D) ∈ S] ≤ eϵ ⋅ ℙ[ℳ(D′￼) ∈ S] + δ .

Each user can be each prompt (which is the   and it is static), but the response   and reward   are 
dynamic, since they are determined in the on-policy manner. This is in sharp contrast to supervised learning 
where the whole dataset  is static and fixed in advance.

x y r(x, y)

Definition 2 (DP in PO)
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Q2:  
 
How to design a unified framework for 
private policy optimization?
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A Meta Algorithm for Private PO
Objective: Maximize expected reward through iterative policy parameter optimization

Algorithm 1: Meta Algorithm

for  do t = 1,…, T

end for

Sampling Phase

Updating Phase

Evaluation Phase

Collect a fresh dataset  of size m 

using  and  ： 

D̄t = {(xi, yi, y′￼i)}m
i=1

πθt
μ

xi ∼ ρ, yi ∼ μ( ⋅ |xi), y′￼i ∼ πθt
( ⋅ |xi)

Estimate  by Aπθt(xi, yi) ̂At(xi, yi) := r(xi, yi) − r(xi, y′￼i)

Call a PrivUpdate oracle on   

to find next policy 

Dt := {(xi, yi, y′￼i, ̂At(xi, yi))}m
i=1

θt+1
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A Meta Algorithm for Private PO
Objective: Maximize expected reward through iterative policy parameter optimization

Algorithm 1: Meta Algorithm

for  do t = 1,…, T
Collect a fresh dataset  of size m 

using  and  ： 

D̄t = {(xi, yi, y′￼i)}m
i=1

πθt
μ

xi ∼ ρ, yi ∼ μ( ⋅ |xi), y′￼i ∼ πθt
( ⋅ |xi)

Estimate  by Aπθt(xi, yi) ̂At(xi, yi) := r(xi, yi) − r(xi, y′￼i)

Call a PrivUpdate oracle on   

to find next policy 

Dt := {(xi, yi, y′￼i, ̂At(xi, yi))}m
i=1

θt+1

end for

Sampling Phase

Updating Phase

Evaluation Phase

Proposition 1

Suppose PrivUpdate satisfies -DP under the Definition of standard DP, then 
Algorithm 1 satisfies -DP in terms of the Definition of DP in PO.

(ϵ, δ)
(ϵ, δ)
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Proposition 1

Suppose PrivUpdate satisfies -DP under the standard DP definition, then Algorithm 1 
also satisfies -DP in terms of the Definition of DP in PO.

(ϵ, δ)
(ϵ, δ)

Proof Sketch. 
 

This result simply follows from our one-pass algorithm and (adaptive) parallel composition of DP, by 
noting that changing one user would only change one record in  of a single .Dt t ∈ [T]

Extensions of Meta Algorithm. 

• The same argument can extend to online settings, 
where a stream of N “users” arrive sequentially and updates are applied adaptively.

• Our framework can also accommodate Joint Differential Privacy (JDP)* 

by the so-called billboard lemma[3].

* JDP guarantees that changing one “user” (say ) will not change all the actions prescribed to all other “users” except u, as well as the final policy.u
24



Differentially Private  
Policy Gradient

Vanilla policy gradient (PG)[4].

θt+1 = θt + η∇J(θt)

(one simple and direct approach)

where  is some learning rate,  is the gradient 
at step , and  is some initial value.

η > 0 ∇J(θt)
t θ1

The gradient can be written as follows by the classic policy 
gradient theorem: 
 

.∇J(θ) = 𝔼x∼ρ,y∼πθ(⋅|x) [Aπθ(x, y)∇θlog πθ(y |x)]

25

Algorithm 1: Meta Algorithm

for  do t = 1,…, T
Collect a fresh dataset  of size m 

using  and  ： 

D̄t = {(xi, yi, y′￼i)}m
i=1

πθt
μ

xi ∼ ρ, yi ∼ μ( ⋅ |xi), y′￼i ∼ πθt
( ⋅ |xi)

Estimate  by Aπθt(xi, yi) ̂At(xi, yi) := r(xi, yi) − r(xi, y′￼i)

Call a PrivUpdate oracle on   

to find next policy 

Dt := {(xi, yi, y′￼i, ̂At(xi, yi))}m
i=1

θt+1

end for

Algorithm 2: Differentially Private Policy Gradient 

for  do t = 1,…, T

Collect a fresh dataset  of size m 

using  and  ： 

D̄t = {(xi, yi, y′￼i)}m
i=1

πθt
μ

xi ∼ ρ, yi ∼ μ( ⋅ |xi), y′￼i ∼ πθt
( ⋅ |xi)

Estimate  by Aπθt(xi, yi) ̂At(xi, yi) := r(xi, yi) − r(xi, y′￼i)

end for

Compute gradient： 

∇̂mJ(θ) :=
1
m

m

∑
i=1

∇θ log πθt
(yi ∣ xi) ⋅ ̂At(xi, yi)

Add noise:  

g̃t := ∇̂mJ(θ) + 𝒩(0,σ2I)

Output policy:  θt+1 = θt + η ⋅ g̃t



Differentially Private NPG

Natural policy gradient (NPG)[5].

θt+1 = θt + ηF†
ρ(θt)∇J(θt)

(uses the Fisher information matrix)

An equivalent way to write the above update 
is 

 

 

which essentially reduces PO to a sequence 
of regression problems.

θt+1 = θt + η ⋅ wt,

wt ∈ arg min
w

𝔼x∼ρ,y∼πθt(⋅|x) [(Aπθt(x, y) − w⊤ ∇log πθt
(y |x))

2],
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Algorithm 1: Meta Algorithm

for  do t = 1,…, T
Collect a fresh dataset  of size m 

using  and  ： 

D̄t = {(xi, yi, y′￼i)}m
i=1

πθt
μ

xi ∼ ρ, yi ∼ μ( ⋅ |xi), y′￼i ∼ πθt
( ⋅ |xi)

Estimate  by Aπθt(xi, yi) ̂At(xi, yi) := r(xi, yi) − r(xi, y′￼i)

Call a PrivUpdate oracle on   

to find next policy 

Dt := {(xi, yi, y′￼i, ̂At(xi, yi))}m
i=1

θt+1

end for

Algorithm 3: Differentially Private NPG 

for  do t = 1,…, T

Collect a fresh dataset  of size m 

using  and  ： 

D̄t = {(xi, yi, y′￼i)}m
i=1

πθt
μ

xi ∼ ρ, yi ∼ μ( ⋅ |xi), y′￼i ∼ πθt
( ⋅ |xi)

Estimate  by Aπθt(xi, yi) ̂At(xi, yi) := r(xi, yi) − r(xi, y′￼i)

end for

• Call the PrivLS oracle on  to 
find an approximate minimizer  of  

Dt := {(xi, yi, ̂At(xi, yi))}
wt

wt = arg min
w

𝔼 [(Aπθt(x, y) − w⊤ ∇log πθt
(y |x))

2]
• Output policy: θt+1 = θt + ηwt



Differentially Private REBEL

Regression to Relative Reward 
Based RL (REBEL)[6].

θt+1 = arg min
θ

𝔼 [ 1
η (ln

πθ(y ∣ x)
πθt

(y ∣ x)
− ln

πθ(y′￼∣ x)
πθt

(y′￼∣ x) ) − (r(x, y) − r(x, y′￼))]
2

where the expectation here is over 
, and  can be 

either on-policy distribution  or any offline 
reference policy. 

x ∼ ρ, y ∼ μ( ⋅ |x), y′￼ ∼ πθt
( ⋅ |x) μ

πθt
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Algorithm 1: Meta Algorithm

for  do t = 1,…, T
Collect a fresh dataset  of size m 

using  and  ： 

D̄t = {(xi, yi, y′￼i)}m
i=1

πθt
μ

xi ∼ ρ, yi ∼ μ( ⋅ |xi), y′￼i ∼ πθt
( ⋅ |xi)

Estimate  by Aπθt(xi, yi) ̂At(xi, yi) := r(xi, yi) − r(xi, y′￼i)

Call a PrivUpdate oracle on   

to find next policy 

Dt := {(xi, yi, y′￼i, ̂At(xi, yi))}m
i=1

θt+1

end for

Algorithm 4: Differentially Private REBEL 

for  do t = 1,…, T

Collect a fresh dataset  of size m 

using  and  ： 

D̄t = {(xi, yi, y′￼i)}m
i=1

πθt
μ

xi ∼ ρ, yi ∼ μ( ⋅ |xi), y′￼i ∼ πθt
( ⋅ |xi)

Estimate  by Aπθt(xi, yi) ̂At(xi, yi) := r(xi, yi) − r(xi, y′￼i)

end for

• Call the PrivLS oracle on  
to find an approximate minimizer  of  

Dt := {(xi, yi, ̂At(xi, yi))}
wt

arg min
θ∈Θ

Ft(θ) = 𝔼
1
η (ln

πθ(y |x)
πθt

(y |x)
− ln

πθ(y′￼|x)
πθt

(y′￼|x) ) − ( ̂At(xi, yi))
2

,

• Output policy: θt+1 = θt + ηwt



Q3:  
 
What's the sample complexity cost induced 
by differential privacy in PO?
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Differentially Private Policy Gradient

Theorem 2 First-Order Stationary Point Convergence
Under Assumption 1, there exists a proper parameter choices 
of  and  , such that DP-PG achieves   

 

where  is uniformly sampled from , and .

m η

𝔼 [∥∇J(θU)∥2] ≤ Oδ
1

N
+ ( d

Nϵ )
2/3

,

θU {θ1, …, θT} N = T ⋅ m

Assume for any and , there exists a constant 
 such that . Then, setting 

 in Algorithm 2 (DP-PG) ensures 
that DP-PG satisfies -DP, as in DP in PO.

x ∈ 𝒳 θ ∈ Θ
G ∥∇θlog πθ(y ∣ x)∥ ≤ G

σ2 =
16 log(1.25/δ)R2

𝗆𝖺𝗑G2

m2ϵ2

(ϵ, δ)

Theorem 1 Privacy guarantee

29

Assumption 1* Lipschitz Smoothness (LS)[7]

There exist constants  such that for every state 
, the gradient and Hessian of  of any 
 satisfy 

 

G, F > 0
x ∈ 𝒳 log πθ( ⋅ ∣ x)
θ ∈ Θ

∥∇θlog πθ(y |x)∥ ≤ G and ∥∇2
θlog πθ(y |x)∥ ≤ F .

* Both tabular and log-linear softmax satisfy this assumption.



Differentially Private Policy Gradient
Theorem 2 First-Order Stationary Point Convergence

Under Assumption 1, there exists a proper parameter choices of  and  , such that DP-PG achieves   

 

where  is uniformly sampled from , and .

m η

𝔼 [∥∇J(θU)∥2] ≤ Oδ
1

N
+ ( d

Nϵ )
2/3

,

θU {θ1, …, θT} N = T ⋅ m

30

For a fixed , the key here is to balance between batch size  and number of iterations  
so as to balance between the per-iteration accuracy and the total number of updates. 
This balance, in turn, depends on the specific choice of PrivUpdate oracle, which will be 
instantiated in the next sections for DP-PG, DP-NPG, and DP-REBEL, respectively.

N m T



Differentially Private Policy Gradient

Assumption 2 Fisher-non-degenerate[8]

For all , there exists  s.t. the Fisher information 
matrix  induced by policy  and initial state distribution  
satisfies 

θ ∈ ℝd γ > 0
Fρ(θ) πθ ρ

Fρ(θ) = 𝔼x∼ρ,y∼πθ(⋅|x) [∇θlog πθ(y |x)∇θlog πθ(y |x)⊤] ≥ γId .

Assumption 3 Compatible[8]

For all , there exists  such that the transferred 
compatible function approximation error satisfies 

 

 where  is an optimal policy and .

θ ∈ ℝd α𝖻𝗂𝖺𝗌 > 0

𝔼x∼ρ,y∼πθ*(⋅|s) [(Aπθ(x, y)−u*⊤ ∇θlog πθ(y |x))2] ≤ α𝖻𝗂𝖺𝗌

πθ* u* = Fρ(θ)† ∇J(θ)

The function  is "isotropically balanced and 
sufficiently informative" over the  distribution induced by 

 and the current policy. This prevents situations where there is 
a complete lack of signal in certain directions. 

∇θlog πθ(y |x)
(x, y)

ρ

When using the "compatible" features  to 
approximate the advantage function, the error, when transferred 
to the distribution of the optimal policy, is upper-bounded.

∇θlog πθ(y |x)

31

This assumption is standard in the literature on non-private PG 
methods and holds for many common policy classes, such as 
Gaussian policies and even certain neural network policies

This is also a common assumption in the PG literature to 
handle function approximation error in the non-tabular case.

We now turn our focus to the global optimum convergence in the sense of average regret



If the policy class  satisfies these assumptions, then we 
have   

                

πθ

J* − J(θ) ≤
G
γ

∇J(θ) + α𝖻𝗂𝖺𝗌 .

Lemma 1[8]

Differentially Private Policy Gradient

For any , DP-PG enjoys the following average regret 
guarantee 

 

when the sample size satisfies 

α > 0

J* −
1
T

T

∑
t=1

𝔼 [J(θt)] ≤ O(α) + O ( α𝖻𝗂𝖺𝗌),

N ≥ Oδ ( 1
α4γ4 +

d

α3γ3ϵ )

Theorem 3

Match the non-private case!32

Match the FOSP!



Recall our DP-NPG

Natural policy gradient (NPG)[5].

θt+1 = θt + ηF†
ρ(θt)∇J(θt)

(uses the Fisher information matrix)

An equivalent way to write the above update 
is 

 

 

which essentially reduces PO to a sequence 
of regression problems.

θt+1 = θt + η ⋅ wt,

wt ∈ arg min
w

𝔼x∼ρ,y∼πθt(⋅|x) [(Aπθt(x, y) − w⊤ ∇log πθt
(y |x))

2],
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Algorithm 1: Meta Algorithm

for  do t = 1,…, T
Collect a fresh dataset  of size m 

using  and  ： 

D̄t = {(xi, yi, y′￼i)}m
i=1

πθt
μ

xi ∼ ρ, yi ∼ μ( ⋅ |xi), y′￼i ∼ πθt
( ⋅ |xi)

Estimate  by Aπθt(xi, yi) ̂At(xi, yi) := r(xi, yi) − r(xi, y′￼i)

Call a PrivUpdate oracle on   

to find next policy 

Dt := {(xi, yi, y′￼i, ̂At(xi, yi))}m
i=1

θt+1

end for

Algorithm 3: Differentially Private NPG 

for  do t = 1,…, T

Collect a fresh dataset  of size m 

using  and  ： 

D̄t = {(xi, yi, y′￼i)}m
i=1

πθt
μ

xi ∼ ρ, yi ∼ μ( ⋅ |xi), y′￼i ∼ πθt
( ⋅ |xi)

Estimate  by Aπθt(xi, yi) ̂At(xi, yi) := r(xi, yi) − r(xi, y′￼i)

end for

• Call the PrivLS oracle on  to 
find an approximate minimizer  of  

Dt := {(xi, yi, ̂At(xi, yi))}
wt

wt = arg min
w

𝔼 [(Aπθt(x, y) − w⊤ ∇log πθt
(y |x))

2]
• Output policy: θt+1 = θt + ηwt



Differentially Private NPG

Assumption 3 Private estimation error
For each , the PrivLS oracle satisfies -DP while 
ensuring that with probability at least , 

 

for some error function  over batch size , privacy 
parameters , , and probability .

t ∈ [T ] (ϵ, δ)
1 − ζ

𝔼x∼ρ,y∼μ(⋅|x) [(Aπθt(x, y) − w⊤
t ∇log πθt

(y |x))
2] ≤ err2

t (m, ϵ, δ, ζ),

err2
t (m, ϵ, δ, ζ) m

ϵ δ ζ

Assumption 4* -smoothness and boundednessβ
is a -smooth function of  for all , i.e., 

 

Moreover, there exists a constant  such that for all , 
the weight vectors  generated by the update rule satisfy 

.

log πθ(y |x) β θ x, y

∇θlog πθ(y |x) − ∇θ′￼log πθ′￼(y |x)
2

≤ β θ − θ′￼ 2 .

W > 0 t ∈ [T ]
wt

∥wt∥2 ≤ W
34

Note that this assumption is algorithm-free, meaning 
one can insert any private regression implementation 
as long as one provides its sample error upper bound.

Smoothness allows upper bound   

by the log-likelihood ratio  plus a quadratic 

term, thereby enabling a telescoping sum over .

⟨θt+1 − θt, ∇log πθt
⟩

log
πθt+1

πθt
T

* Assumption 4 is also a standard regularity assumption commonly used even in 
the non-private case.

To start with, we assume that the approximate minimizer  returned by PrivLS at each iteration satisfies:wt



Differentially Private NPG
Assumption 3

Assumption 4

Private estimation error

-smoothness and boundednessβ

For each , the PrivLS oracle satisfies -DP while 
ensuring that with probability at least , 

 

for some error function over  batch size , privacy 
parameters , , and probability .

t ∈ [T ] (ϵ, δ)
1 − ζ

𝔼x∼ρ,y∼μ(⋅|x) [(Aπθt(x, y) − w⊤
t ∇log πθt

(y |x))
2] ≤ err2

t (m, ϵ, δ, ζ),

err2
t (m, ϵ, δ, ζ) m

ϵ δ ζ

is a -smooth function of  for all , i.e., 

 

Moreover, there exists a constant  such that for all , 
the weight vectors  generated by the update rule satisfy 

.

log πθ(y |x) β θ x, y

∇θlog πθ(y |x) − ∇θ′￼log πθ′￼(y |x)
2

≤ β θ − θ′￼ 2 .

W > 0 t ∈ [T ]
wt

∥wt∥2 ≤ W

Let Assumption 3 and 4 hold, DP-NPG satisfies -DP as 
in DP in PO. Moreover, if  is a uniform distribution 

at each state and , with probability at least 

, for any comparator policy , we have  

 

where *and .

(ϵ, δ)
π1 := πθ1

η =
2 log |𝒴 |

TβW2

1 − ζ π*

J(π*) −
1
T

T

∑
t=1

J(πt) ≤
βW2 log |𝒴 |

2T
+

Cμ→π*

T

T

∑
t=1

errt(m, ϵ, δ, ζ),

Cμ→π* := maxx,y
π*(y |x)
μ(y |x) πt := πθt

Theorem 4 (Master theorem)
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* We use the most intuitive coverage defi



Cμ→π*



Differentially Private NPG

Only need to determine the estimation error under different types of PrivLS!
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Differentially Private NPG

Algorithm 5: PrivLS Instantiation for DP-NPG  
via Exponential Mechanism

• Sample with the following distribution wt ∈ 𝒲

P(w) ∝ exp (−
ϵ

8R2
𝗆𝖺𝗑

⋅ L(w)) ∀w ∈ 𝒲,

where L(w) := ∑i∈[m] [w⊤ ∇log πθt
(yi |xi) − ̂At(xi, yi)]2 .

• Input: , privacy budget , current 
policy , reward range 

Dt = {(xi, yi, ̂At(xi, yi))}m
i=1 ϵ

θt R𝗆𝖺𝗑

• Output: wt

Lemma 2

Assume the advantage function satisfies 
approximate realizability: 

 

Then, sampling  via the exponential mechanism 
yields:

inf
w∈𝒲

𝔼x∼ρ,y∼μ(⋅|x) [(Aπθt(x, y) − w⊤ ∇log πθt
(y |x))2] ≤ α𝖺𝗉𝗉𝗋𝗈𝗑 .

ŵ

𝔼(x,y)∼ρ×μ(⋅|x) [(ŵ⊤ ∇log πθt
(y |x) − Aπθt(x, y))2] ≲

R2 log( |𝒲 | /ζ)
m

+
R2 log( |𝒲 | /ζ)

ϵm
+ α𝖺𝗉𝗉𝗋𝗈𝗑 .

Approach 1: Exponential Mechanism
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Applications of Differentially Private NPG

Consider DP-NPG with PrivLS as in Algorithm 
above. Then, DP-NPG satisfies -DP. Suppose for 
each , there exists such an . Then, 
under the same assumptions in Theorem 4, we have 

 

This implies that, for a given suboptimality gap of 
, the sample complexity 

bound is 
.

(ϵ,0)
t ∈ [T] α𝖺𝗉𝗉𝗋𝗈𝗑

J(π*) −
1
T

T

∑
t=1

J(πt) ≲
βW2 log |𝒴 |

T
+ Cμ→π*α𝖺𝗉𝗉𝗋𝗈𝗑 + Cμ→π* ⋅

(1 + 1/ϵ)log( |𝒲 | /ζ)
m

.

O(α + Cμ→π*α𝖺𝗉𝗉𝗋𝗈𝗑)

N = T ⋅ m = Õ (( 1
α4 + 1

α4ϵ
) ⋅ log |𝒲 | ⋅ βW2)

Corollary 1 General function class
Lemma 2

Assume the advantage function satisfies 
approximate realizability: 

 

Then, sampling  via the exponential 
mechanism yields:

inf
w∈𝒲

𝔼x∼ρ,y∼μ(⋅|x) [(Aπθt(x, y) − w⊤ ∇log πθt
(y |x))2] ≤ α𝖺𝗉𝗉𝗋𝗈𝗑 .

ŵ

𝔼(x,y)∼ρ×μ(⋅|x) [(ŵ⊤ ∇log πθt
(y |x) − Aπθt(x, y))2] ≲

R2 log( |𝒲 | /ζ)
m

+
R2 log( |𝒲 | /ζ)

ϵm
+ α𝖺𝗉𝗉𝗋𝗈𝗑 .

Approach 1: Exponential Mechanism
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Applications of Differentially Private NPG

When the policy is log-linear and reward  is 
realizable, Assumption 3 reduces to 
estimation error of linear regression: 

 

where , which 
depends on the current policy.

r

𝔼x∼ρ,y∼μ(⋅|x) [(⟨wt − w*, ϕ̄t
x,y⟩)

2] ≤ err2
t (m, ϵ, δ, ζ)

ϕ̄t
x,y := ϕx,y − 𝔼y′￼∼πθt(⋅|x)[ϕx,y′￼

]

Consider DP-NPG with the above log-linear class 
(with smoothness parameter ). Suppose 
PrivLS is instantiated with the ISSP algorithm in 
Brown et al.[9]. Then, we have that ,   
when 
 

                 .  

 
Thus, by Theorem 4, for a suboptimality gap of , 
the sample complexity bound is 
                 .

β = B2

errt(m, ϵ, δ, ζ) ≤ α

m ≥ Õ ( d
α2 +

d log(1/δ)

αϵ + d(log(1/δ))2

ϵ2 )
O(α)

N = T ⋅ m = Õ δ (( d
α4 + d

α3ϵ
+ d

α2ϵ2 ) ⋅ B2W2)

Corollary 2 Log-linear policy in low-dimension

Approach 2: Log-Liner Policy with realizable rewards

39

One can directly replace this algorithm with 
more efficient methods when available.



Applications of Differentially Private NPG

When the policy is log-linear and reward  is 
realizable, Assumption 3 reduces to 
estimation error of linear regression: 

 

where , which 
depends on the current policy.

r

𝔼x∼ρ,y∼μ(⋅|x) [(⟨wt − w*, ϕ̄t
x,y⟩)

2] ≤ err2
t (m, ϵ, δ, ζ)

ϕ̄t
x,y := ϕx,y − 𝔼y′￼∼πθt(⋅|x)[ϕx,y′￼

]

Corollary 3 Log-linear policy in high-dimension

Approach 2: Log-Liner Policy with realizable rewards

Consider DP-NPG with the above log-linear class 
(with smoothness parameter ). Suppose 
PrivLS is instantiated with JDP_Improper_BatchSGD 
algorithm in Chen et al.[10]. Then, we have that 

,   when     

                    .  

 
Thus, by Theorem 4, for a suboptimality gap of , 
the sample complexity bound is 
                    .

β = B2

errt(m, ϵ, δ, ζ) ≤ α

m ≥ Õ ( log(1/ζ)
α4 +

log(1/ζ)log(1/δ)

α3ϵ )
O(α)

N = T ⋅ m = Õ δ (( 1
α6 + 1

α5ϵ
) ⋅ B2W2)

40

Same as before, this algorithm can be directly 
replaced if more efficient methods are available.



Conclusion
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Three Fundamental Questions for Private Policy Optimization

•📊 Theory: 
What's the sample complexity cost induced by differential privacy in PO?

•🧩 Definition: 
What is the right notion of differential privacy for policy optimization?

•⚙ Framework: 
How to design a unifi

We defined DP in PO.
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Three Fundamental Questions for Private Policy Optimization

•📊 Theory: 
What's the sample complexity cost induced by differential privacy in PO?

•🧩 Defi


•⚙ Framework: 
How to design a unified framework for private policy optimization?

We present a meta algorithm for private PO, which builds upon a 
unified view of PG, NPG, and REBEL. 
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Three Fundamental Questions for Private Policy Optimization

•📊 Theory: 
What's the sample complexity cost induced by differential privacy in PO?

•🧩 Defi


•⚙ Framework: 
How to design a unifi

We demonstrate that privacy costs can often manifest as lower-order terms 
in the sample complexity.
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Thank you!
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